УДК 613.292+615.322:577.1:579.6 © Р.Г. Хайбуллин, Л.В. Волкова, 2021 https://doi.org/10.29296/25877313-2021-04-01

ПЕРСПЕКТИВЫ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СУБСТАНЦИЙ ИЗ БИОМАССЫ РАСТЕНИЙ МЕТОДОМ МИКРОБНОЙ ФЕРМЕНТАЦИИ (ОБЗОР)

Р.Г. Хайбуллин

аспирант,

Пермский национальный исследовательский политехнический университет (г. Пермь, Россия)

E-mail: ruslan.khaibullin@yandex.ru

Л.В. Волкова

д.м.н., профессор,

Пермский национальный исследовательский политехнический университет (г. Пермь, Россия)

E-mail: wolkowalw@mail.ru

В настоящее время под воздействием разнообразных неблагоприятных факторов у населения возникает ряд метаболических нарушений, которые могут приводить к различным хроническим заболеваниям, в частности, к возникновению преддиабета инн-сулиннезависимого диабета (сахарный диабет 2-го типа). В качестве средств для профилактики возникновения метаболических нарушений применяются препараты растительного происхождения за счет их более мягкого действия на организм, низкой токсичности и выраженного гипогликемического эффекта некоторых из них. При изготовлении растительных препаратов широко применяется метод ферментации, в связи с чем повышение эффективности данного метода является актуальной задачей биотехнологии и фармацевтики.

Цель исследования: изучить и проанализировать литературные данные по применению метода ферментации в производстве лекарственных препаратов и биологически активных добавок растительного происхождения.

На основании представленного обзора предложен метод повышения эффективности традиционной ферментации путем применения пробиотических микроорганизмов рода *Lactobacillus*, позволяющий обогатить субстанцию продуктами их метаболизма и получить продукт, оказывающий синергетический эффект на организм человека.

Ключевые слова: метаболизм, сахарный диабет 2-го типа, БАВ, методферментации, Lactobacillus.

Для цитирования: Хайбуллин Р.Г., Волкова Л.В. Перспективы получения биологически активных субстанций из биомассы растений методом микробной ферментации (обзор). Вопросы биологической, медицинской и фармацевтической химии. 2021;24(4):3–8. https://doi.org/10.29296/25877313-2021-04-01

В настоящее время под действием неблагоприятных факторов окружающей среды, неправильного и несбалансированного питания, стрессов, изменения ритма жизни, у населения все чаще возникает проблема дефицита питательных веществ, а также изменения качественного и количественного состава микробиоты кишечника. Это снижает сопротивляемость организма к различным инфекционным агентам, может приводить к нарушениям метаболизмаи развитию разнообразных хронических заболеваний [1]. Одним из самых распространенных заболеваний, развивающихся на фоне нарушения метаболических функций, является сахарный диабет 2-го типа (СД2). Согласно прогнозам экспертов ВОЗ, число больных в мире к 2030 г. достигнет 578 млн человек, в том числе в России 5,81 млн [2]. Таким образом, эпидемиологическая ситуация, как во всем мире, так и в России, носит крайне неблагоприятный характер. Сахарному диабету 2-го типа зачастую предшествуют гипергликемия и преддиабет, одна-ко своевременно принятые меры, предусматривающие в том числе употребление лекарственных препаратов и биологически активных добавок (БАД), стабилизирующих уровень глюкозы в крови, положительно сказываются на обмене веществ в целом и способствуют снижению риска заболеваемости [2, 3].

В целях профилактики и комплексного лечения СД2 препараты растительного происхождения широко не используются, однако эффективность и безопасность научно обоснованного применения лекарственных и пищевых растений не вызывает сомнений [3–7]. Эффективность их применения обусловлена не только прямым гипогликемическим эффектом конкретных биологически активных веществ (БАВ), в частности полисахарида инулина, но и действием на сопряженные системы

метаболизма организмав целом [8, 9]. Инулин и его производные вместе с незаменимыми аминокислотами и ферментами способствуют существенному снижению уровня холестерина в крови, обеспечивают восстановление сосудов, метаболических изменений в миокарде и нарушений сердечного ритма при гипертонической болезни и сахарном диабете.

Также инулин является стимулятором роста бифидо- и лактобактерий, способен связывать и выводить из организма соли тяжелых металлов, яды и радиоактивные вещества [10]. Имеется положительный опыт и результаты доклинических [11–15] и клинических [16, 17] исследований по эффективности и безопасности применения отечественных растений при СД2.

Таким образом, использование лекарственных препаратов и БАД растительного происхож-

дения, обладающих богатым биохимическим составом и гипогликемическими свойствами за счет наличия в их биомассе полисахарида инулина, является эффективным способом в профилактике и комплексном лечении СД2.

Цель исследования— анализ литературных данных по применению метода ферментации в производстве лекарственных препаратов и биологически активных добавок растительного происхождения.

ФЕРМЕНТАЦИЯ КАК МЕТОД ПОЛУЧЕНИЯ ПРЕПАРАТОВ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ

В последние годы возросло количество препаратов растительного происхождения (как лекарственных, так и БАД), получаемых методом ферментации (табл. 1) [18].

Таблица 1. Лекарственные препараты и БАД, получаемые методом ферментации, разрешённые к применению в Российской Федерации

Наименование, страна производитель	Состав	Применение
«Цернилтон» лекарственный препарат, США	Микробиологически ферментированный экстракт пыльцы растений: рожь, пшеница, тимофеевка луговая	Лечение гиперплазии предстательной железы
«Бальзам «Полифит-М» БАД, Россия	Многоступенчатая ферментация на растительном масле свежих растений: шиповника, грецкого ореха, солодки голой, василистника малого, чабреца, вероники лекарственной широколистной, хвоща полевого, череды трехраздельной и др.	Общеукрепляющее средство
Травяной чай «Травиата» БАД, Россия	Цветки боярышника, плоды аронии черноплодной, листья чёрной смородины, трава мелиссы лекарственной, комплекс «Травиата» (листья земляники ферментированные, чай чёрный байховый или чай зелёный ферментированный, листья чёрной смородины, листья мяты перечной)	Гипотензивное средство
«Рекицен – РД» БАД, Россия	Пшеничные отруби, ферментированные штаммом винных дрожжей	Профилактика метаболического синдрома, сахарного диабета, атеросклероза
«Бластофаг» БАД, Россия	Препарат из ферментированных свежесобранных листьев и стеблей чистотела	Опухоли различной локализации и генеза
«Авемар» БАД, Венгрия	Продукт ферментации зародышей пшеницы с использованием специальных дрожжей	Иммуномодулирующее средство, поддерживающая терапия онкологических больных

Ферментация растительного сырья позволяет увеличить процент экстрагируемых веществ в конечном продукте, что повышает его пищевую и лечебную ценность. Так, у корней горечавки жёлтой происходит деструкция гликозидов с образо-

ванием свободного агликона; у корней пиона, корневищ ириса увеличивается выход эфирных масел; при ферментации листьев наперстянки в 4 раза увеличивается выход дигитоксина, что существенно повышает ценность данного сырья [19].

Традиционный способ ферментации состоит из ряда последовательных стадий: сбор сырья, его завяливание, деформация, ферментация, далее сушка и фасовка. Важнейшие окислительные ферменты растительного сырья, вызывающие процессы ферментации - полифенолоксидаза и пероксидаза. Они сосредоточены, в основном, в пластидах листа; фенольные соединения, как известно, находятся главным образом в клеточном соке. Инициация процесса ферментации, т.е. высвобождение ферментов, достигается путем механической деформации листа - скручивания, измельчения, растирания, при этом ферменты вступают в контакт с фенольными соединениями и вызывают их усиленное окисление. В результате данных процессов у фенольных соединений ферментированного сырья проявляются разнообразные виды биологической активности, отсутствующие в неферментированных видах, например, противоопухолевая [20].

Также известно, что благодаря методуферментации возможно снизить токсичность некоторых видов растений, что открывает новые пути для их применения. Так, сок чистотела обладает высокой биологической активностью и эффективен при наружном применении в отношении доброкачественных опухолей, таких как папилломы, полипы и другие, однако парентеральное его введение при лечении онкологических заболеваний считалось бесперспективным ввиду его высокой токсичности. Но препараты чистотела, изготовленные с применением метода ферментации, показали лизирующее действие на некоторые виды злокачественных образований и оказались безопасными как для парентерального, так и для внутримышечного введения. Были разработаны такие препараты, как Бластофаг (Россия), Авемар (Венгрия), Амитозин (Украина), Украин (Австралия, Канада, США, Австрия) [21].

ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МЕТОДА ФЕРМЕНТАЦИИ

Традиционный процесс ферментации представляет собой относительно длительный технологический цикл. Это связано с низкой активностью окислительной среды, что затрудняет технологически непрерывный цикл производства фитопродукции. Этот факт снижает качественные показатели конечного продукта, вследствие чего возникает необходимость повышения эффективности данного процесса. Основная задача в повышении качества препаратов растительного происхождения — обес-

печение интенсификации и равномерности протекания биохимических процессов в листе, в результате которых образуются вещества, обуславливающие специфичность и качество продукта [22].

Известны варианты технологий, ускоряющих процесс ферментации, повышающих качество продукции и его производство [23], сущность которых заключается в стимулировании процессов ферментации посредством максимального измельчения листовой массы до мелкодисперсного состояния. Измельчение сырья достигается не только механическим скручиванием, но и с помощью быстрого и глубокого замораживания (в клетках листьев образуются кристаллы льда, что приводит к их разрушению), обработкой листа газообразной углекислотой при высоком давлении (резкое снижение давления до атмосферного вызывает «взрыв» клеточных оболочек). Известна технология, при которой ферментацию инициируют тепловым ударом до температуры 90-100 °C в течение 8-10 мин [23].

Несмотря на перспективность перечисленных технологий, они не нашли широкого применения на производстве в связи с необходимостью использования громоздкого специфического оборудования и реагентов (объемных морозильных камер для быстрой и глубокой заморозки, камер высокого давления с подачей углекислоты, нагревательных устройств для резкого и кратковременного нагрева биомассы до высокой температуры). Также варианты с резкими перепадами температур, либо нагревании биомассы до высоких температур, способствуют инактивации ферментов листа, что приводит к существенному понижению эффективности либо невозможности последующей стадии ферментации.

В настоящее время перспективными считаются методы микробиологической ферментации, которые позволяют получать легкоусвояемые продукты с повышенным содержанием аминокислот, белков, витаминов. Известен ряд исследовательских работ, в ходе которых изучались методы ферментации растительного сырья при помощи микроорганизмов [24–29]. В некоторых исследованиях было установлено, что ферментация сырья при помощи микроорганизмов увеличивала количество фенольных соединений, аминокислот и витаминов в получаемых продуктах [24–28], а также количество экстрактивных веществ в них [29].

Интенсификация ферментации микроорганизмами позволит проводить процесс за более короткий промежуток времени и получать продукт с

повышенным содержанием не только биологически активных веществ используемого в процессе растительного сырья, но и продуктов метаболизма бактерий [29]. В качестве микробных агентов возможно использование микроорганизмов рода *Lactobacillus*, активно применяющихся в производстве ферментированных пищевых продуктов и кормов.

Известно, что пробиотические микроорганизмы, составляющие основную массу кишечной микрофлоры, играют важнейшую роль в профилактике и лечении нарушений метаболизма человека и способны оказывать следующее влияние на организм [30]:

- модуляция кишечной микрофлоры;
- регуляция развития иммунной системы;
- регенерация эпителия в кишечнике;
- снижение системного воспаления и метаболической эндотоксемии;
- ингибирование накопления массы тела и висцерального жира, положительное влияние на метаболические нарушения;
- улучшение липидного профиля крови.

Регулярное употребление сбалансированных комплексов веществ с про- и пребиотическими эффектами позволяет восстановить качественно-количественный состав микрофлоры пищеварительного тракта и, как следствие, снизить риск ожирений, стабилизировать метаболизм у людей, понижая риск взаимосвязанных проблем со здоровьем, в том числе и проблемы СД2 [30].

выводы

Таким образом, в качестве одного из подходов к получению эффективных растительных препаратов и введению в них дополнительных свойств может рассматриваться ферментация биомассы растений при помощи пробиотических микроорганизмов рода Lactobacillus.

Получаемый на выходе продукт будет иметь повышенный процент экстрактивных веществ, обусловленных как БАВ, содержащимися в самой растительной биомассе, так и продуктами микробного метаболизма. Данные микроорганизмы обеспечат интенсификацию протекания биохимических процессов в реакционной среде, а также позволят получить продукт, обогащенный витаминами, экзополисахаридами, короткоцепочечными жирными кислотами и другими метаболитами, что позволит как восполнить дефицит некоторых питательных веществ в организме, так и нормализо-

вать кишечную микрофлору, оказывая синергетический эффект на организм человека.

Авторами опубликован ряд исследований [28, 29, 31], подтверждающих эффективность использования данной технологии. Получен патент на получение фитокомпозиции методом микробной ферментации [32].

ЛИТЕРАТУРА

- Ардатская М.Д. Пробиотики, пребиотики и метабиотики в коррекции микроэкологических нарушений кишечника. Медицинский совет. 2015; 13: 94–99.
- Saeedi P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes research and clinical practice. 2019; 157.
- Дедов И.И. Инновационные технологии в лечении и профилактике сахарного диабета и его осложнений. Сахарный диабет. 2013; 3: 2–10.
- 4. Eddouks M., Bidi A., El Bouhali B., Hajji L., Zeggwagh N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014; 66(9): 1197–1214.
- Feshani A.M., Kouhsari S.M., Mohammadi S. Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxandiabetic Wistar rats. J. Ethnopharmacol. 2011; 133(1): 67–74.
- 6. Patel D.K., Kumar R., Laloo D., Hemalatha S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed. 2012; 2(5): 411–420.
- 7. Preetha P.P., Devi V.G., Rajamohan T. Hypoglycemic and antioxidant potential of coconut water in experimental diabetes. Food Funct. 2012. 3(7): 753–757.
- 8. *Блинков И.Л.* Алгоритм использования пищевых растений в лечебных целях. В кн.: Лечебные свойства пищевых растений. Под общ. ред. *Т.Л. Киселевой*. М.: Изд-во ФНКЭЦТМДЛ Росздрава, 2007; 80–101.
- Карпеев А.А. и др. Фитотерапия: Методические рекомендации МЗРФ 2000/63/. В кн.: Фитотерапия: нормативныедокументы. Под общ. ред. А.А. Карпеева, Т.Л. Киселевой. М.: Изд-во ФНКЭЦТМДЛ Росздрава, 2006; 9–42.
- Авилова И.А., Беляев А.Г. Разработка кисломолочных продуктов лечебно-профилактической направленности с использованием сырья растительного происхождения. Технологии производства пищевых продуктов питания и экспертиза товаров: сб. статей. Курск, 2015; 10–13;
- 11. Асраров М.И., Позилов М.К., Эргашев Н.А., Рахматуллаева М.М. Влияние гипогликемического средства гликоразмулина на функциональное состояние митохондрий при стрептозотоцин-индуцированном диабете. Проблемы эндокринологии. 2014; 60(3): 38–42.
- 12. Джафарова Р.Э., Гараев Г.Ш., Джафаркулиева З.С. Действия экстракта листьев черники обыкновенной на течение патологического процесса аллоксан-индуцированного сахарного диабета. Фундаментальные исследования: Медицинские науки. 2010; 4: 36–43.
- 13. Канаткина Т.А., Поветьева Т.Н., Пашинский В.Г. Фармакологическая активность сока из корней лопуха войлочного. Новые достижения в создании лекарственных средств растительного происхождения. Томск: Печатная мануфактура, 2006; 153–158.

- Маслов Д.Л., Ипатова О.М., Абакумова О.Ю., Цветкова Т.А., Прозоровский В.Н. Исследование гипогликемического действия экстракта из листьев Aronia melanocarpa. Вопросы медицинской химии. 2002; 48(3): 271–277.
- 15. Tinkov A.A., Nemereshina O.N., Popova E.V., Polyakova V.S., Gritsenko V.A, Nikonorov A.A. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats. Eur. J. Nutr. 2014; 53(3): 831–842.
- 16. *Седова А.Б., Зорина Е.В.* Лекарственные растения в лечении сахарного диабета. Под ред. *Г.И. Олешко*. Пермь: ГОУ ВПО «ПГФА Росздрава», 2006; 227 с.
- Чернявская И.В., Захарова А.А., Романова И.П., Кравчун Н.А. Фитотерапия в комплексном лечении сахарного диабета 2-го типа в сочетании с неалкогольной жировой болезнью печени. Новости медицины и фармации. 2014; 20(522): 18–19.
- Терёшина Н.С., Самылина И.А., Костенникова З.П. Ферментация и получение лекарственных препаратов. Фармация. 2012; 3: 53–56.
- Бокарева С.Ю. и др. Использование физико-химических методов анализа при разработке технологии производства препаратов из наперстянки шерстистой. Материалы 2-й Всеросс. конф. «Химия и технология растительных веществ». Казань, 24–27 июня 2002; 69 с.
- Червяковский Е.М., Курченко В.П., Костюк В.А. Роль флавоноидов в биологических реакциях с переносом электронов. Труды Белорусского государственного университета. Серия: Физиологические, биохимические и молекулярные основы функционирования биосистем. 2009; 4(1): 9–26.
- Boros L.G., Nichelatti M., Shoenfeld Y. Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases. Journal: Annals of the New York Academy of Sciences. 2005; 1051: 529–542.
- 22. Maysuradze Z.A. Bases of technology of granulated tea. Ozurgeti. 2010; 75 p.
- Алиев А.А. и др. Использование озонирования в чайном производстве. Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия «Естественные науки». 2014; 55(4): 90–100.
- Von A., Joubert E., Hansmann C.F. Comparison of the antioxidant activity of rooibostea (Aspalathuslinearis) withgreen, oolongand blacktea. Food. Chem. 2007; 60: 73–77.

- 25. Zhao L.F., Xu Y.J., Zhou H.J. Research on microbes improve quality and flavor of pu'er tea in solid fermentation. Food Res. Develop. 2006; 27: 155–156.
- 26. Fadhlina A. The effects of temperature and fermentation time on selected cchemical composition, antioxidant and quality of Cat Whiskers (Orthosiphon stamineus) Tea. Pulau Pinang: University Sains Malaysia, 2008.
- Jeng Kee-Ching, Chen Chin-Shuh, Fang Yu-Pun. Effect of Microbial Fermentation on Content of Statin, GABA, and Polyphenols in Pu-Erh Tea. J. Agric. Food Chem. 2007; 55: 8787–8792.
- 28. Хайбуллин Р.Г., Волкова Л.В. Повышение эффективности ферментации растительного сырья в производстве фиточая с использованием микроорганизмов Lactobacillus Plantarum. Материалы Всеросс. научн.-практич. конф. молодых ученых, аспирантов, студентов и школьников (с междунар. участием) «Химия. Экология. Урбанистика». Пермь: Изд-во ПНИПУ, 2017; 437–441.
- 29. Хайбуллин Р.Г., Волкова Л.В. Оптимизация микробной ферментации растительного сырья для получения фитосбора с биологически активными свойствами. Материалы Всеросс. научн.-практич. конф. молодых ученых, аспирантов, студентов и школьников (с междунар. участием) «Химия. Экология. Урбанистика». Пермь: Изд-во ПНИПУ, 2018; 634–638.
- Плотникова Е.Ю., Краснов О.А. Метаболический синдром и кишечная микрофлора: что общего? Экспериментальная и клиническая гастроэнтерология. 2014; 12: 64–73.
- 31. Хайбуллин Р.Г., Волкова Л.В. Оценка влияния водного настоя ферментированной биомассы Helianthus Tuberosus на кинетику роста лактобактерий. Материалы Всеросс. научн.-практич. конф. молодых ученых, аспирантов, студентов и школьников (с междунар. участием) «Химия. Экология. Урбанистика». Пермь: Изд-во ПНИПУ, 2019; 345—349
- 32. Патент № 2733141 (РФ). Способ получения фитокомпозиции: № 2019119049: заявл. 18.06.2019: опубл. 29.09.2020. Волкова Л.В., Хайбуллин Р.Г. 6 с.

Поступила после доработки 21 января 2021 г.

PERSPECTIVES FOR PRODUCTION PLANT BIOMASS BIOLOGICALLY ACTIVE PRODUCT BY THE MICROBIAL FERMENTATION METHOD (REVIEW)

© R.G. Khaibullin, L.V. Volkova, 2021

R.G. Khaibullin

Post-graduate Student, Perm National Research Polytechnic University (Perm)

E-mail: ruslan.khaibullin@yandex.ru

I V Volkova

Dr.Sc. (Med.), Professor, Perm National Research Polytechnic University (Perm)

E-mail: wolkowalw@mail.ru

Currently, under the various adverse factors influence, metabolic disorders are increasingly occurring in the population. It can lead to various chronic diseases, to the occurrence of a pre-diabetic state and non-insulin dependent diabetes (type 2 diabetes). As a means of these disorders occurrence preventing, herbal preparations are used due to their milder effect on the body, low toxicity and pro-